II B.Tech - I Semester - Regular Examinations - MARCH 2021

ELECTRICAL CIRCUIT ANALYSIS
 (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Define Reactive Power.
b) State Millman's Theorem.
c) What is the Final condition of the elements Inductor \&

Capacitor, when the switch is closed for long time?
d) Define Co-efficient of coupling.
e) Compare Single Phase System and Three Phase System.

PART - B
UNIT - I
2.
a) Briefly Explain about (i) Power Factor (ii) Power Triangle (iii) Complex Power.
b) A sinusoidal voltage $\mathrm{v}(\mathrm{t})=50 \sin (314 \mathrm{t})$ volts is applied to 6 M an AC circuit. The current is $\mathrm{i}(\mathrm{t})=25 \sin \left(314 \mathrm{t}-53^{\circ}\right)$ amperes. Determine (i) Average Power (ii) Apparent Power (iii) Power Factor.

OR

3. a) Explain the steady state analysis of Series RC circuit 6 M when excited by a sinusoidal input.
b) Determine the steady state current in a Series RL circuit 6 M which consists of $\mathrm{R}=20 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ when excited by a voltage $v(t)=100 \cos \left(1000 t+90^{\circ}\right)$ volts.

UNIT - II

4. a) Briefly discuss about (i)Series Resonance (ii)Parallel 6 M Resonance.
b) Determine the node voltages of given circuit using Super Node Analysis.

5. a) State and prove Tellegen's Theorem with an example. 6 M
b) Verify Reciprocity Theorem for the given circuit.

UNIT-III

6. a) Derive an expression for Step Response of Series RLC 6 M Circuit.
b) For the given Series RC Circuit, determine the current in the circuit when the voltage is applied by closing the switch at $\mathrm{t}=0$.

7. For a Series RL circuit, a sinusoidal voltage is applied at $\mathrm{t}=0$. Determine the expression for $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.

UNIT - IV

8. a) Explain in brief about (i) Self Inductance (ii) Mutual Inductance.
b) Determine the Loop Currents I_{1} and I_{2} in the given circuit.

OR

9. a) The impedance parameters of a two port network are 6 M $Z_{11}=6 \Omega, \quad Z_{22}=4 \Omega, \quad Z_{12}=Z_{21}=3 \Omega$. Compute the Admittance Parameters and Transmission Parameters.
b) Find the Hybrid Parameters for the given two port network.

UNIT - V

10. a) Explain about Star Connected three phase balanced 6 M system and derive the relationship between line and phase voltages.
b) A balanced Delta Connected load of $(2+\mathrm{j} 3) \Omega$ per phase 6 M is connected to a balanced three phase supply of 440 V . Determine the phase currents and line currents.

OR

11. a) Explain the two wattmeter method to measure the 6 M power in three phase circuits.
b) The input power to a three phase load is 10 kW at 0.86 M power factor lagging. Two wattmeters are connected to measure the power. Find the individual readings of the wattmeters.
